MIT Global Airline Industry Program

The Planning of Ground Delay Programs Subject to Uncertain Capacity

Michael Hanowsky October 25, 2007

Advising Committee: Prof. Cynthia Barnhart (Chair), Prof. Amedeo Odoni (Research Advisor), Prof. Joseph Sussman

Source: http://www.apo.data.faa.gov/aspm, 23 May 2006

GDPs create ground delays to avoid those in the air

Ground Delay Programs require more advance planning than other ATFM tools

GDP design considers two key questions

- How much ground delay should be assigned?
 - Too much causes additional, unnecessary delays
 - Too little and expensive airborne delays may occur
- When should the GDP be created?
 - Waiting means that flights depart and cannot be delayed
 - Additional, improved capacity information becomes available over time

GDPs are both stochastic and dynamic

Academic literature highlights the use of optimization techniques

- Uncertain forecast arrival capacities can be quantified
 - MIT Lincoln Laboratory (2004): use airport-specific meteorological data
 - Hansen and Liu (2006): use historical AARs
- Linear programming techniques can model GDPs with uncertain arrival capacities
 - Odoni and Richetta (1993): stochastic and dynamic conditions
 - Mukherjee and Hansen (2004): aircraft based model
- GDPs with uncertain arrival capacities can be analyzed
 - Hanowsky (2006): Analysis of GDPs with uncertain capacity

Existing literature is concerned with system efficiency

Model IV Objective Function

Minimize:

$$\sum_{Q} p_q \times \sum_{F} \left(TDC_{fq} + ADC_{fq} + GDC_{fq} \right)$$

Minimize the weighted sum of delay costs for all flights

Subject To: DELAY COST

$$TDC_{fq} = \sum_{t=DT_{f}}^{T-1} \left(\left(1 - \lambda_{ftq}\right) \times \left(\tau_{t-DT_{f}+1} - \tau_{t-DT_{f}}\right) \right) \quad \forall f \in F; q \in Q$$

$$GDC_{fq} = \sum_{t=DT_{f}-ERT_{f}}^{T-ERT_{f}-1} \left(\left(1 - d_{ftq}\right) \times \left(\gamma_{t-DT_{f}+ERT_{f}+1} - \gamma_{t-DT_{f}+ERT_{f}}\right) \right) \quad \forall f \in F; q \in Q$$

$$AD_{fq} = \sum_{T} \left(\delta_{ftq} - \lambda_{ftq} \right) \quad \forall \ f \in F; q \in Q$$
$$ADC_{fq} \ge m_t \times AD_{fq} + b_t \quad \forall \ f \in F; t \in T; q \in Q$$

From a system perspective, we seek to minimize the total expected cost

Flight delay by scheduled departure time

Delay Cost by Scheduled Departure Time for FC

Flight delay by scheduled arrival time

The "wait and see" approach avoids uncertainty

"Wait and see" is reinforced in practice by GDP "scope"

The "wait and see" approach also sets a scope

Average and StDev of delay by flight distance

Average and StDev of delay by flight carrier

Average and StDev of delay by aircraft type

GDP-TFM Model Results

